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Abstract—Today’s network traffic are dynamic and fast. Con-
ventional network traffic classification based on flow feature and
data mining are not able to process traffic efficiently. Hardware
based network traffic classifier is needed to be adaptable to
dynamic network state and to provide accurate and updated
classification at high speed. In this paper, a hardware architecture
of online incremental semi-supervised algorithm is proposed.
The hardware architecture is designed such that it is suitable
to be incorporated in NetFPGA reference switch design. The
experimental results on real datasets show that with only 10%
of labeled data, the proposed architecture can perform online
classification of network traffic at 1Gbps bitrate with 91%
average accuracy without loosing any flows.

Index Terms—Online incremental classification; NetFPGA;
network traffic classification;

I. INTRODUCTION

Network managers use quality-of-service (QoS) manage-
ment to monitor traffic classes to achieve certain quality
aims such as committed access rate (CAR). They categorize
network traffic into groups of critical and non-critical traffic;
or business and non-business traffic in order to perform such
monitoring. Network traffic classification is applied in this
case to assist network managers to accomplish these network
management tasks.

In order to support real-time network traffic monitoring with
data rates up to hundreds of Gbps, network traffic classifiers
have to be designed on hardware. Several recent works [1]–
[4] proposed the implementation of network traffic classifiers
that were based on flow features on field programmable gate
array (FPGA) to increase classification throughput. In addition,
high throughput network processing platform such as Network
processing FPGA (NetFPGA) were used in [1], [2] such that
extraction of flow features from network traffic can be done
inline with the flow of network traffic. This is to ensure that
the overall traffic classification does not become the bottleneck
in the network.

However, today’s network traffic does not grow only in
speed and size. The ever-changing and dynamic behavior
of today’s network traffic (due to the introduction of new
applications, changing in network size and protocol) could not
be handled by network traffic classifiers based on batch data
mining, as the classification model is fixed upon training that
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fully rely on labeled dataset. Flow labeling is time-consuming
and it could not be done accurately without human inputs.
Thus, in order to handle dynamic high bandwidth network
traffic, a classifier not only need to be able to perform online
classification, but it also needs to update its classification
model from time-to-time and able to learn from unlabeled
flows.

In our earlier work [5], an incremental k-means algorithm
for online network traffic classification was proposed, which
is able to perform update on the classifier incrementally based
on labeled and unlabeled flow. In this paper, a hardware
architecture that is suitable to be incorporated in NetFPGA
reference switch design [6] is proposed based on the algorithm
in [5] to perform online classification for high throughput
network traffic classification.

II. NETWORK TRAFFIC CLASSIFICATION ON NETFPGA

Monemi et al. [2] proposed a hardware network traffic
classification based on decision tree algorithm on NetFPGA.
The work implemented a fully working system with flow
exporter and feature extraction ability in line speed on NetF-
PGA Ethernet switch design. Monemi et al. [2] added a
Flow_Classifier module that consists of a flow exporter, fea-
ture extractor and static classifier as an additional pipeline
stage in between Output_Port_Lookup and Output_Queues on
NetFPGA Ethernet switch design.

In this paper, the network traffic classification architecture
is proposed based on the original work done by Monemi et
al. [2]. As shown in Figure 1, the proposed network traffic
classifier can be used by replacing the original static classifier
in Flow_Classifier.

III. ONLINE INCREMENTAL k-MEANS ALGORITHM

The incremental k-means classification proposed in [5]
consists of two main processes: classification and learning. By
using supervised k-means technique, initial batch labeled flow
instances are clustered into k initial clusters. The clusters are
then compressed to sufficient statistics known as Clustering
Features, CF=<N ,~µ,~R,~U ,T ,y> where
N : number of instances in cluster
~µ : centroid of clusters
~R : radius of clusters
~U : direction of centroid change
T : timestamp
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y : class of clusters
The classification process finds the distance of incoming

flow instances xi from all clusters. xi is classified as being
in the class of the nearest clusters. Flow instances with
higher prediction confidence are used for incremental learning
by updating its nearest cluster. At the same time, labeled
flow instances are injected to the model. Outdated clusters
will be removed from the classification model during the
reconstruction process. Further details of online incremental
k-means algorithm can be found in reference [5]. In this paper,
the Manhattan distance method is used.

IV. INCREMENTAL SEMI-SUPERVISED TRAFFIC
CLASSIFIER ARCHITECTURE

The proposed classifier architecture consists of three main
modules, which are the classification, incremental_learning,
and cluster_memory modules. The classification module and
incremental learning module perform most of the processing
of flow instances. They are connected to the cluster memory
module that stores cluster information. Host computer can
provide labeled flow instances through the register pipeline
of NetFPGA platform to the incremental learning module.
Figure 2 shows the top level block diagram of the incremental
semi-supervised classifier architecture.

A. Classification Module

This module performs classification of incoming flow in-
stances. Figure 3 shows the block diagram of the classification
module. The classification module consists of a module that
compares each feature of an input flow instance and cluster
centroid to feed the correct input to the distance calculation
pipeline. The distance_calculation_pipeline has d pipeline
stages, where d is the number of features. In each pipeline
stage, the absolute difference of features between the incom-
ing flow instance and the cluster centroid is calculated and
accumulated. The output of this module is the total distance.
The get_nearest module is a state machine that compares the
total distance to find the cluster with the shortest distance.
The module compares upon the receiving of the first valid
total distance from distance calculation pipeline.

The online classifier module takes (k+ d+4) clock cycles
to complete the classification of one flow instance. k is the
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Fig. 1: Top-level architecture high throughput network traffic
classifier on NetFPGA.
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Fig. 2: Incremental semi-supervised traffic classifier block
diagram.
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Fig. 3: Classification block diagram.

number of clusters in the classification module, which ranges
from 64 to 127 for the case of kd = 64 and kmax = 128. In
short, the classifier produces the predicted label between 74
and 137 clock cycles after receiving the flow instance.

B. Incremental Learning Module

The incremental learning module takes its input
from the online classifier module and cluster mem-
ory module. This module is the only module that has
both write and read accesses to the cluster memory.
A FIFO is implemented to buffer the input from the
classifier module as this module might need more
time to process a flow instance compared to the
classifier module. On the other hand, the input from
the host computer are labeled instances, hence it has
the priority for learning. Thus, it will not be buffered
as learning is done immediately. Figure 4 shows the
simplified block diagram of the incremental learning
module.

1. Finite state machine (FSM) in incremental learning
module controls the incremental learning process. The
total learning cycles for one flow instance is dependent
on the steps which it goes through, which ranges from
10 to 50 clock cycles.

2. Nearest_Neighbor module has the same architecture as
the classification module except that it does not produce
the predicted class. It finds the nearest centroid and
supplies the minimum distance and cluster information
to the learning module.
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Fig. 5: Boundary check module.

3. Boundary_Check module is made up of two parts. The
first part is to calculate the radius of the nearest cluster
and compare with the distance, while the second part
is to compare with fix boundary R = 2 when N = 1.
Figure 5 shows the block diagram and algorithmic state
machine (ASM) for FSM of this module.

4. Cluster_Update module computes the new cluster fea-
tures CF including updating the timestamp. Figure 6
shows the ASM of this module. The state machine
checks on the confidence level and whether a new cluster
has been created. Figure 7 shows the data flow graph
to update the components in CF=<N ,~µ,~R,~U ,T ,y>. The
critical path delay happens when calculating for new
radius. This module applies serial processing at features
level as the hardware resources are limited in NetFPGA
and most of the resources are allocated for online clas-
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sifier module to maximize its throughput. Each group
calculation is repeated d times. Hence it will take up
the most clock cycles in the whole incremental learning
process, which is 5d + 1 clock cycles to complete one
process. When injecting a new cluster or replacing a
current cluster with a new cluster, it only needs 1 clock
cycle.

5. Reconstruction module consists of a FIFO kmax deep.
Figure 8 shows the block diagram of reconstruction
module. Clusters with t 6= 0 will be copied into FIFO
from cluster memory and t is decremented by one. The
process will continue by removing t = 0 clusters from
FIFO until there is only kd cluster in the FIFO. The
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module will write all clusters in the FIFO back to cluster
memory and push empty cluster back to cluster memory
for the cluster addresses from kd + 1 to kmax.
During the reconstruction process, all inputs from the
labeled module will not be processed and all outputs
from the online classifier module will be buffered in its
FIFO. This process does not affect the online classifier
module as it processes in parallel. However, the writing
process will take kmax clock cycles and it may cause
false classification for those flow instances being classi-
fied during the update process. Since the reconstruction
does not happen frequently, false classification on one
flow instance is very rare.
This implementation is different from the original pro-
posed method in [5], where the number of clusters is
unbounded, which is an unwanted scenario as it will
consume high hardware resources. Thus, this part of
the algorithm is modified to dynamic method where
the number of clusters in the classification model is
constantly being observed. Once the total number of
clusters reach the maximum number of clusters kmax,
reconstruction will be initiated.

C. Cluster_Memory Module

The cluster memory module is used to store cluster in-
formation that is CF=<N ,~µ,~R,~U ,T ,y> up to the number of
maximum cluster, kmax. In this paper, kmax is set to 128. A
total of 417 bits are needed to store one cluster information,
where the size allocation of each variable is listed in Table I.
As it is huge, having them as a whole will complicate the
synthesis process. Thus, the cluster information is divided
into three units. The first unit, cluster_memory_A, consists
of y and µ that are the necessary information used by both
the classification and incremental learning modules. This unit
is built to have one input and two outputs as it will only
be written by the incremental learning module, while it can
be read by both online classifier and incremental learning
modules. An additional bit is added in cluster_memory_A to
show the validity of cluster in that memory location. This bit
is important to the classifier as it acts as the indicator on which
memory location has valid cluster information as the number
of clusters is not static.

TABLE I: Size allocation of components in the cluster infor-
mation

Components Size (bits)
y 5
~µ 126
~R 192
~U 72
T 11
N 11

y m

R

U N T

Cluster Memory A

Cluster Memory B

Cluster Memory C

0125130

0

0

191

93 21 10

Fig. 9: Cluster memory bit allocation.

Cluster_memory_B and cluster_memory_C modules have
one input and one output. Cluster_memory_B stores the
information of ~R and cluster_memory_C stores the rest of
the cluster information. Both cluster memories can only be
accessed from the incremental learning module. The bits
allocation of cluster memory module is in Figure 9.

V. RESULTS AND ANALYSIS

This section discusses the overall performance of the pro-
posed architecture. The percentage of labeling is assumed to
be P = 10%.

A. Datasets

Two real network traffic datasets UNIBS [7] and PAM [8]
are chosen for the experiment. The UNIBS dataset [7] was
captured in University of Brescia for three consecutive days
from 30th September 2016 to 2nd October 2016. A total of
77,303 flows are extracted. By using the provided groundtruth
labels, the flows are labeled into five classes, namely Web,
Mail, P2P, SKYPE, and Others.

The PAM dataset [8] was captured in Aalborg University
from 25th February 2013 to 1st May 2013. A total of 339,061
flows are extracted from these datasets. By using the provided
information files, the flows are labeled into four classes,
namely WEB, FTP, P2P, and Others. In this work, all traces
are processed using flow exporter and feature extractor based
on 1 minutes timeout where flows that have five packets or
more are extracted. Table II summarizes the datasets and
Table III shows the selected online features for classification.

TABLE II: Dataset used.

UNIBS [7] PAM [8]
# flow features 12 12
# classes 5 4
# flow instances 77303 339061
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TABLE III: List of online features selected for online classi-
fication.

ID Name Long Description
01 TL IP Total bytes in IP packet
02 UL IP Total bytes in IP packet (uplink)
03 DL IP Total bytes in IP packet (downlink)
04 TL Eth Total bytes in Ethernet packet
05 UL Eth Total bytes in Ethernet packet (uplink)
06 DL Eth Total bytes in Ethernet packet (downlink)
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Fig. 10: Difference of online classification and incremental
semi-supervised learning process waveform for a) interleave-
test-then-train and b) simultaneous test-and-train method.

B. Accuracy

In this section, the accuracy of the incremental semi-
supervised classifier is measured using testbench that is vali-
dated in Modelsim in two simulation setups. The first setup is
the interleave-test-then-train method where new incoming flow
instance is assumed to arrive after learning has been done.
The second setup is the simultaneous-test-and-train where
new incoming flow instances arrive back-to-back before the
learning is done. Both simulation setups are illustrated in
Figure 10.

Figure 11 shows the network traffic classifier’s accuracy
comparison between the interleave-test-then-train method and
simultaneous-test-and-train method. The result shows that the
classifier maintain similar accuracy in both setups. The average
accuracy for both dataset are 90.09% and 91.80% for UNIBS
and PAM datasets, respectively.

C. Overall Throughput

The performance of the online incremental semi-supervised
learning network traffic is shown in Table IV. In this paper,
the overall throughput, Toverall metric as proposed in [4] is
used. The throughput is calculated in terms of total number
of classifications done per unit time by the classifier hardware
architecture. The measurement is in Million Classifications per

Simultaneous Test-and-train

Interleave-test-then-train

(a)

Simultaneous Test-and-train

Interleave-test-then-train

(b)

Fig. 11: Accuracy comparison between interleave-test-then-
train and simultaneous test-and-train online and incremental
semi-supervised learning network traffic classification for a)
UNIBS and b) PAM datasets.

second (MCps). Given Nc is the total number of classifica-
tions, Tc is the total clock cycle used and fc is the clock rate,
the calculation of throughput is defined as follow:

Toverall =
Nc ∗ fc
Tc

(1)

The proposed hardware architecture can work within the
clock rate of NetFPGA 1G reference design’s 64-bit pipeline
datapath clock rate which is 125 MHz. Thus, the overall
throughput of the proposed classifier is at least 1.16 Million
Classification per second (MCps), which results in less than
0.9µs classification time for each flow instance classification.
Assuming that flow exporter is embedded in a network pro-
cessing platform and feature extraction is able to process in
line speed as shown by Monemi et al. [2], the online classifier
is able to classify a flow in less than 1.6µs for 1Gbps line
rate. This is calculated based on the worst case scenario
where a flow with empty-payload packets arrive back-to-back.
As the proposed method takes the first 5 packets statistic
information from the first five packets, the shortest inter-arrival
time for two flows is 1.6µs (i.e., 40bytes∗5packets

1Gbps ). This clearly
shows that the proposed hardware network traffic classifier can
perform online classification in which all flow instances can
be classified upon arrival.

D. Resource Consumption

The proposed architecture occupies 27% of the available
slices in Virtex 2-pro. Table V shows the detail breakdown of
hardware resource utilization of each module. The incremental
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TABLE IV: Overall performance for online and incremental
semi-supervsied learning network traffic.

Dataset UNIBS PAM
Total flow instance 77,303 339,061
Total clock cycle used 8,310,785 35,701,463
Average clock cycle per flow instance 108 106
Overall throughput (at 125MHz clock rate) 1.16 MCps 1.19 MCps
Average classification time 0.864µs 0.848µs

TABLE V: Hardware resources utilization.

Occupied Slices Used BRAMs
Incremental Semi-Supervised
k-means Classifier

6550 (27%) 31 (13%)

+ Classification Module 876 (3%) -
+ Incremental_Learning
Module

5454 (23%) 18 (7%)

- Nearest_Neighbor Module 865 (3%) -
- Boundary_Check Module 601 (2%) -
- Cluster_Update Module 2765 (11%) -
- Reconstruction Module 1142 (4%) 13 (5%)
+ Cluster_Memory Module 26 (<1%) 13 (5%)

learning module uses almost 8× more resources than the
classification module. The cluster_update module utilizes the
highest portion of consumed resources. This is due to the use
of many large registers in the pipeline calculation to update
the cluster information. Apart from that, the reconstruction
module takes up a large portion of resources especially the
Block Random Access Memory (BRAM) used. This is due
to the number of a FIFO to temporarily store the cluster’s
information for processing that has the same size as the cluster
memory module.

Referring to the occupied slices report in reference [2],
the total occupied slices for the decision tree network traffic
classifier is 77%, while the decision tree classifier used 8% of
the total resources. The proposed hardware architecture can be
implemented on the same platform by replacing the classifier
module.

E. Discussion

The architecture is synthesized in Virtex 2-pro FPGA and
targeted on NetFPGA 1G reference design. NetFPGA 1G
reference design has the time constraint of 8µs per cycle for
the user data path pipeline module. Virtex 2-pro FPGA has
limited hardware resources especially the number of slices. In
addition, the reference Ethernet Switch design [6] in NetFPGA
occupies nearby 50% of the hardware resources. Hence, only
limited slices can be used for additional functionalities. This
limits the performance of the proposed classifier.

To improve the current architecture, more advanced plat-
form such as NetFPGA 10G that comes with Virtex 5
FPGA can be used. With more hardware resources avail-
able, more functions can be made as parallel computation
modules. For example in the classification module, the dis-
tance_calculation_pipeline can be duplicated in parallel so that
the time needed to find the nearest distance can be reduced by
half. Besides, the same method can be applied to the cluster
update module so that the time to update can be improved.

VI. CONCLUSION

This paper discusses the realization of online network traffic
classifier that is based on incremental semi-supervised classi-
fication algorithm proposed in [5] on FPGA. The results show
that the proposed hardware architecture is able to perform
online classification at 1Gbps bitrate without dropping any
flows. The results also show that by having back-to-back
classification does not have significant effect on the overall
accuracy. Although the proposed architecture uses up 27%
of hardware resources, it shows the implementation of the
proposed algorithm on networking platform is possible. In
future, the architecture will be implemented in an upgraded
NetFPGA version to improved the classification performance.
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